181 research outputs found

    The mystery of the brain-culture interface

    Get PDF
    Nature and culture work together to shape who we are. We are embedded in culture and are profoundly influenced by what those around us say and do. The interface between minds occurs at the level of explicit metacognition, which is at the top of our brain's control hierarchy. But how do our brains do this

    The role of social cognition in decision making

    Get PDF
    Successful decision making in a social setting depends on our ability to understand the intentions, emotions and beliefs of others. The mirror system allows us to understand other people's motor actions and action intentions. ‘Empathy’ allows us to understand and share emotions and sensations with others. ‘Theory of mind’ allows us to understand more abstract concepts such as beliefs or wishes in others. In all these cases, evidence has accumulated that we use the specific neural networks engaged in processing mental states in ourselves to understand the same mental states in others. However, the magnitude of the brain activity in these shared networks is modulated by contextual appraisal of the situation or the other person. An important feature of decision making in a social setting concerns the interaction of reason and emotion. We consider four domains where such interactions occur: our sense of fairness, altruistic punishment, trust and framing effects. In these cases, social motivations and emotions compete with each other, while higher-level control processes modulate the interactions of these low-level biases

    Social cognition

    Get PDF
    Social cognition concerns the various psychological processes that enable individuals to take advantage of being part of a social group. Of major importance to social cognition are the various social signals that enable us to learn about the world. Such signals include facial expressions, such as fear and disgust, which warn us of danger, and eye gaze direction, which indicate where interesting things can be found. Such signals are particularly important in infant development. Social referencing, for example, refers to the phenomenon in which infants refer to their mothers' facial expressions to determine whether or not to approach a novel object. We can learn a great deal simply by observing others. Much of this signalling seems to happen automatically and unconsciously on the part of both the sender and the receiver. We can learn to fear a stimulus by observing the response of another, in the absence of awareness of that stimulus. By contrast, learning by instruction, rather than observation, does seem to depend upon awareness of the stimulus, since such learning does not generalize to situations where the stimulus is presented subliminally. Learning by instruction depends upon a meta-cognitive process through which both the sender and the receiver recognize that signals are intended to be signals. An example would be the ‘ostensive’ signals that indicate that what follows are intentional communications. Infants learn more from signals that they recognize to be instructive. I speculate that it is this ability to recognize and learn from instructions rather than mere observation which permitted that advanced ability to benefit from cultural learning that seems to be unique to the human race

    The social brain?

    Get PDF
    The notion that there is a 'social brain' in humans specialized for social interactions has received considerable support from brain imaging and, to a lesser extent, from lesion studies. Specific roles for the various components of the social brain are beginning to emerge. For example, the amygdala attaches emotional value to faces, enabling us to recognize expressions such as fear and trustworthiness, while the posterior superior temporal sulcus predicts the end point of the complex trajectories created when agents act upon the world. It has proved more difficult to assign a role to medial prefrontal cortex, which is consistently activated when people think about mental states. I suggest that this region may have a special role in the second-order representations needed for communicative acts when we have to represent someone else's representation of our own mental state. These cognitive processes are not specifically social, since they can be applied in other domains. However, these cognitive processes have been driven to ever higher levels of sophistication by the complexities of social interaction

    Helping the waiter to hold his tray: Rigid haptic linkage promotes inter-personal motor coordination

    Get PDF
    When a glass is lifted from a tray, there is a challenge for the waiter. He must quickly compensate for the reduction in the weight of the tray to keep it balanced. This compensation is easily achieved if the waiter lifts the glass himself. Because he has, himself, initiated the action, he can predict the timing and the magnitude of the perturbation of the tray and respond (via the holding hand) accordingly. In this study, we examined coordination when either one or two people hold the tray while either one of them or a third person removes the glass. Our results show that there is exquisite coordination between the two people holding the tray. We suggest that this coordination depends upon the haptic link provided by the rigid platform that both people are holding. We conclude that the guest at a reception should not lift his drink from the waiter’s tray until they have the waiter’s attention but, if too thirsty to wait, should lend a hand holding the tray

    Independent neural computation of value from other people's confidence

    Get PDF
    Expectation of reward can be shaped by the observation of actions and expressions of other people in one's environment. A person's apparent confidence in the likely reward of an action, for instance, makes qualities of their evidence, not observed directly, socially accessible. This strategy is computationally distinguished from associative learning methods that rely on direct observation, by its use of inference from indirect evidence. In twenty-three healthy human subjects, we isolated effects of first-hand experience, other people's choices, and the mediating effect of their confidence, on decision-making and neural correlates of value within ventromedial prefrontal cortex (vmPFC). Value derived from first hand experience and other people's choices (regardless of confidence) were indiscriminately represented across vmPFC. However, value computed from agent choices weighted by their associated confidence was represented with specificity for ventromedial area 10. This pattern corresponds to shifts of connectivity and overlapping cognitive processes along a posterior-anterior vmPFC axis. Task behavior and self-reported self-reliance for decision-making in other social contexts correlated. The tendency to conform in other social contexts corresponded to increased activation in cortical regions previously shown to respond to social conflict in proportion to subsequent conformity (Campbell-Meiklejohn et al., 2010). The tendency to self-monitor predicted a selectively enhanced response to accordance with others in the right temporoparietal junction (rTPJ). The findings anatomically decompose vmPFC value representations according to computational requirements and provide biological insight into the social transmission of preference and reassurance gained from the confidence of others. Significance Statement: Decades of research have provided evidence that the ventromedial prefrontal cortex (vmPFC) signals the satisfaction we expect from imminent actions. However, we have a surprisingly modest understanding of the organization of value across this substantial and varied region. This study finds that using cues of the reliability of other peoples'; knowledge to enhance expectation of personal success generates value correlates that are anatomically distinct from those concurrently computed from direct, personal experience. This suggests that representation of decision values in vmPFC is suborganized according to the underlying computation, consistent with what we know about the anatomical heterogeneity of the region. These results also provide insight into the observational learning process by which someone else's confidence can sway and reassure our choices

    In for a penny, in for a pound: methylphenidate reduces the inhibitory effect of high stakes on persistent risky choice

    Get PDF
    Methylphenidate (MPH) is a stimulant that increases extracellular levels of dopamine and noradrenaline. It can diminish risky decision-making tendencies in certain clinical populations. MPH is also used, without license, by healthy adults, but the impact on their decision-making is not well established. Previous work has found that dopamine receptor activity of healthy adults can modulate the influence of stake magnitude on decisions to persistently gamble after incurring a loss. In this study, we tested for modulation of this effect by MPH in 40 healthy human adults. In a double-blind experiment, 20 subjects received 20 mg of MPH, while 20 matched controls received a placebo. All were provided with 30 rounds of opportunities to accept an incurred loss from their assets or opt for a "double-or-nothing" gamble that would either avoid or double it. Rounds began with a variable loss that would double with every failed gamble until it was accepted, recovered, or reached a specified maximum. Probability of recovery on any gamble was low and ambiguous. Subjects receiving placebo gambled less as the magnitude of the stake was raised and as the magnitude of accumulated loss escalated over the course of the task. In contrast, subjects treated with MPH gambled at a consistent rate, well above chance, across all stakes and trials. Trait reward responsiveness also reduced the impact of high stakes. The findings suggest that elevated catecholamine activity by MPH can disrupt inhibitory influences on persistent risky choice in healthy adults

    Frontal alpha oscillations distinguish leaders from followers: Multivariate decoding of mutually interacting brains

    Get PDF
    Successful social interactions rely upon the abilities of two or more people to mutually exchange information in real-time, while simultaneously adapting to one another. The neural basis of social cognition has mostly been investigated in isolated individuals, and more recently using two-person paradigms to quantify the neuronal dynamics underlying social interaction. While several studies have shown the relevance of understanding complementary and mutually adaptive processes, the neural mechanisms underlying such coordinative behavioral patterns during joint action remain largely unknown. Here, we employed a synchronized finger-tapping task while measuring dual-EEG from pairs of human participants who either mutually adjusted to each other in an interactive task or followed a computer metronome. Neurophysiologically, the interactive condition was characterized by a stronger suppression of alpha and low-beta oscillations over motor and frontal areas in contrast to the non-interactive computer condition. A multivariate analysis of two-brain activity to classify interactive versus non-interactive trials revealed asymmetric patterns of the frontal alpha-suppression in each pair, during both task anticipation and execution, such that only one member showed the frontal component. Analysis of the behavioral data showed that this distinction coincided with the leader–follower relationship in 8/9 pairs, with the leaders characterized by the stronger frontal alpha-suppression. This suggests that leaders invest more resources in prospective planning and control. Hence our results show that the spontaneous emergence of leader–follower relationships in dyadic interactions can be predicted from EEG recordings of brain activity prior to and during interaction. Furthermore, this emphasizes the importance of investigating complementarity in joint action

    Making a case for introspection

    Full text link
    • …
    corecore